
And the Truth will make you Spin*
*Independent Research

Mathew, Cherry G.
NetBSD Developer (since 2006).

Retired FreeBSD Developer (retired 2014).

abc2024@bow.st

Abstract—Design Driven Development using the Spin Verifier
a) The Problem: Currently, the NetBSD sources are in-

herited from historic research, and maintained by a small, but
committed group of volunteers. Often, the role of the NetBSD
developer is to implement or port the design and implementation
of a research project, and this involves buildup of design
understanding and interpretation within the memory of a few
“experts” within the community. This poses a few problems,
especially for newcomers to the project:

1) Documentation and reading code alone, is insufficient to
capture design nuances.

2) The “experts” can become a point of gated access or failure.
3) Design discussions with new developers often occur infor-

mally in the form of socratic questioning, or Q&A with an
“expert” oracle.

4) Design and implementation may drift, simply due to the
lack of a canon for design, and more importantly a way
to mechanically check it for consistency.

b) The Proposal: I propose that the spin verifier [?] be
used as the mechanical verifier, over a formal design model
written in spin’s promela language. This model then serves as
canon, which can be logically queried via propositional logic in
spin’s ltl{} section.

For architects, this takes off the burden of having to rely on
their memory, random tests and bespoke models to keep state.
For developers, it provides a clear ”source of truth” (canon), and
a process based mechanism to verify their implementation based
on this source. And for project managers, there’s much better
visibility over the entire Q&A pipeline, analogous to, but much
more powerful than a simple TDD style development process.

Index Terms—Software Design, Formal Verification, Model
Checking, correctness, TDD, AI Safety

I. INTRODUCTION

A. Motivations: The NetBSD Community - a small community
developing a large codebase

The NetBSD kernel sources contain 3983983 (slightly
under 4 million) Lines of Code (LoC) in the C language, as
of 5th February, 2024. As we add and borrow more features
and ports to the code-base, this number is bound to increase.

This research was self funded over a year long Sabbatical, from February
2023 to 2024. I am now looking to collaborate with people or organisations,
for whom the ideas presented in this paper are of interest.

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0
5
0

1
0
0

1
5
0

2
0
0

1
2
0

1
3
5

1
4
8 1
5
3

1
4
3

1
3
7

1
4
9

1
3
3 1
3
8

1
2
1

1
0
4

9
9

9
5

8
2

9
0

7
7

7
6

7
3

7
9 8
1

8
1

6
5

6
5

5
8

Year, in A.D

NDEVS

However, as the NetBSD kernel codebase naturally in-
creases, the number of kernel developers in the community
is shrinking. Here is a bar-chart of active Developers based
on commit log data from anoncvs.NetBSD.org, from 2003 to
2023. This data shows a 62% attrition over that decade. In
2003, there were 153 active kernel developers - while by 2023,
this number had shrunk to 58.

From the above, we notice that kernel code is managed by a
steadily declining number of developers. This means that the
burden of maintainance in terms of responsibility for lines of
code per developer, steadily increases.

While this may seem like a challenging situation, clean
organisation, management and automation on code can reduce
the challenge significantly. This would naturally lead to a
higher quality system, improving the attraction to the system,
for new developers.

B. Design discovery and Documentation: Separating the
”What” (Design) from the ”How” (Implementation)

When a new developer joins the project, or an existing
developer needs to understand the (design of) the code in



an unfamiliar area, there are a few methods to access design
choices, typically as follows:

1) System documentation: Developers have an assortment
of system manual (man) pages to reference the design and
exported API of specific modules and components of the
kernel. While many of these man pages are excellently docu-
mented, it is often the case that there may be a lag to catchup
with the latest code changes. In rare cases, interfaces may
not be documented at all. Finally, source code itself may
have comments describing the design envelope, and particular
implementation choices made.

2) Online documentation: Developers can consult design
papers by the original designers of an algorithm, protocol or
subsystem used in the kernel, as these are often presented
at conferences such as USENIX or this one. These papers
generally present design in the abstract, and any code that
may be available as reference in the paper are seldom ”drop-
in” usable within the kernel code-base, as code evolves over
time. Furthermore, in adopting and implementing a particular
design, kernel developers may have made appropriate modi-
fications to the design, to fit to the specific environment or
requirements. For eg: Cf. notes in the OpenZFS implementa-
tion code https://github.com/openzfs/zfs/blob/zfs-0.6.3-stable/
module/zfs/arc.c#L31 of the Adaptive Replacement Cache
algorithm, wrt. the Original ARC paper by Meggido et. al.
[?]

This sort of situation implies that developers have to finally
resort to reading the implementation code, in order to infer
final design canon.

3) Inference: Eventually, developers end up reading Imple-
mentation code, to Infer design via ”Pattern recall” from their
coding experience.

Most NetBSD developers have decades of experience, and
while reading new and unfamiliar code, can easily recall
patterns that we have been familiar with over time.

For example, consider the following C code snippet:
Listing 1

LOOP C CODE FRAGMENT

i n t j , i , a r r a y [ 1 0 ] ;

void
p r i n t a r r a y ( void )
{

f o r ( j = 0 ; j < 1 0 ; j ++) {
i = j ;
p r i n t f ( ” a r r a y [%d ] == %d\n ” , i , a r r a y [ i ] ) ;

}
}

An experienced C programmer would only need to briefly
glance at these lines to quickly build the following design in
their head:

”Given an array of integers of length 10, iterate through
every element, and print it”.

This is an inferred design, and the developer may want to
cross check it via scrutiny.

4) Scrutiny: Once the design has been inferred, a developer
would generally have it verified, by having it scrutinised
possibly in the following ways:

1) Scrutiny via Q&A with subsystem experts. A dialogue,
somewhat like the following could possibly ensue:
Novice:
Dear Greybeard of wisdom, my algorithm limits array
size to a fixed size of 10. Is this how it’s done ?

Greybeard:
Ah, but my innocent little novice, had you been around
back in the day when we ran complex algorithms by
counting with our fingers, your algorithm would have
been correct. But nowadays we use these amazing
things called computers which have large amounts of
memory to hold large arrays. Please make the array
able to hold an arbitrary number of elements.

Novice:
Thank you great sage of wisdom. My algorithm now
looks like this: ”Given an array of integers of arbitrary
length, iterate through every element, and print it”.

Greybeard:
But you do see that this could lead to an adversary
misusing your algorithm, don’t you ? They could
make it allocate large amounts of memory, thus risking
crashing the system - have you checked for what might
be a reasonable upper limit to the array size ?

Novice:
I now see the constraints more clearly, great sage. I
shall document them as follows:
“Given an array of predetermined maximum size
ARRAYMAX, iterate through its every element, and
print it. The size of the array shall always be equal to
ARRAYMAX. Similarly, the index value to the array,
shall always be between 0 and (ARRAYMAX - 1).
Eventually, once the algorithm runs to its completion,
the index value will be equal to (ARRAYMAX - 1)”

Greybeard:
I now see that you have understood how to describe
your algorithm more precisely. Your understanding of
the algorithm itself is correct.

Novice:
But, but, my good sir! I do have a question: the code
seems to imply a maximum array size of ’10’ ! How
could it possibly be the case that the size is determined
by ARRAYMAX ?

Greybeard:
Excellent question, you are looking at auto-
generated code, which uses the value in

https://github.com/openzfs/zfs/blob/zfs-0.6.3-stable/module/zfs/arc.c#L31
https://github.com/openzfs/zfs/blob/zfs-0.6.3-stable/module/zfs/arc.c#L31


ARRAYMAX defined at $OBSCURELOCA-
TION WITH OBSCURE SHIM SCRIPT

Congratulations! For having discovered this esoteric
hidden wisdom, you are now allowed at the table of
greybeards, to serve soup and clear the tables.

Novice: Such an honour, good sire!

Notably, this exchange has brought in several design
considerations that would not have been obvious by
just reading the code snippet, such as the potential
DoS vulnerability, or the dynamically generated code
situation. At this point, the Novice has caught up quite
a bit with the design. They have managed to explain the
design succinctly and accurately, both to themselves and
to others - but only in natural language.

2) Scrutiny via comparing with VCS commit log descrip-
tions. An example commit log for the above algorithm
in code might look as follows:

Listing 2
RCSLOG LISTING

r e v i s i o n 1 . 1 3
d a t e : 2 0 2 4 / 0 2 / 5 0 3 : 4 6 : 4 9 ; a u t h o r :

g r e y b e a r d ; s t a t e : Exp ; l i n e s : +0 −1
Summary : Th i s f u n c t i o n i t e r a t e s t h r o u g h a

f i x e d g l o b a l a r r a y and p r i n t s i t s
c o n t e n t s .

Recall that the array size, although appearing to
be a constant of value ’10’, is actually dynam-
ically generated and pasted into code by $OB-
SCURE FANCY MECHANISM - and that this fact is
not clarified in the commit log.

3) Scrutiny via running Unit tests as probes into the design
space and filling the gaps through inference.
While the first two ways are not rigourous (as humans
can generally be assumed to be fallible), Unit testing,
while rigourous, fails to exhaustively cover all possibili-
ties to comprehensively understand the design. It merely
serves as probes into specific scenarios in the design, at
specific time/state snapshots during the execution of the
implementation code. Furthermore, the “big picture” is
left to the inference of the reader.
For eg: a typical test for the above code might be:

Listing 3
PROPOSITIONAL LOGIC PROBES APPLIED TO SYSTEM STATE

vo id
t e s t p r i n t a r r a y ( vo id )
{

a s s e r t ( i >= 0) ;

p r i n t a r r a y ( ) ;

a s s e r t ( i < 10) ;
}

Note that the probes for sane index values are only at
two sample points: one before, and one after printarray()
runs. From the test’s expressivity point of view, there
is no way to check for the “big picture”; ie; what
printarray() might do to the index variable ’i’ during its
execution.

Furthermore, note how the constant size ’10’ is used as
the array size. If the Unit tests had been written by a
developer who did not understand the inferred design,
per Section ??., they would merely look at the source
code, and naturally use the constant value ’10’ as the
maximum value of the index, completely missing the
situation that if the code were autogenerated, their
test cases would not cover any ARRAYMAX that
were greater than 10. This problem would only be
revealed, if the autogenerating code were to use a value
of ARRAYMAX greater than 10, to generate a new
constant assignment for the index variable, ’i’, since
the ’assert(i < 10)’ in the unit test would fire.

Worse still, someone trying to infer the design from
the tests, would completely miss the need for ARRAY-
MAX. If they went back to the code, and the developer
were thorough enough to mention the entire design in
comments, this would simply bring them back to the
situation at Section ??, above. However, there would be
further doubts:

• Could the writer of the unit test have missed
the fact that the need for ARRAYMAX is
documented elsewhere ? Could the developer of
the implementation code have overlooked the
unit test, and missed the inconsistency ? Is the
comment in the source code up-to date ? Are there
other commits where design decisions have been
recorded ?

• In an inconsistent situation like this, which design
is to be believed ?

This is the question of Canon. There needs to be a
single, agreed upon location that fully and canonically
describes the design of the code.

We thus see that merely using the above four methods to
discover, understand and document design is inadequate to cor-
rectly capture, record and communicate it. Furthermore, there
is no current mechanism within the codebase, to mechanically
verify the correctness of any inferred design, apart from the
sparse state space probes via unit testing.

II. PROPOSED SOLUTION:

A. Design Driven Development (DDD)

(Pronounced “D Cubed”)
I introduce DDD as a potential solution to the problem of

design discovery, and documentation, described above.



Inspired from its cousin ”Test Driven Development (TDD)”,
DDD allows for clean separation of Design and Implementa-
tion in the following ways:

1) Model, as Explicit Design: Given a suitably expressive
language, a design can be written down explicitly, and with
verifiable logical consistency. [?]

We call such an explicitly written design, a ”model”.
Developing a model has two advantages:
• Developers can use the model as a rigourous reference

design and write a high fidelity implementation in the C
language.

• Implementations can have context specific flavours, not
limited to the specific OS environment eg: Linux, *BSD,
etc.
Cf. patch posted to the LKML [?]: NetBSD/cbd.c and
linux/cbd.c for an example where the model anchors the
implementations of a toy block driver for both NetBSD
and Linux.

2) Model, as Canon: Once the model is written out, it
becomes canonical, ie; the ultimate source of truth, for the
intended design.

As with the current process described above in Section ??.,
the newly written model needs Scrutiny. Fortunately, this falls
in the domain of Formal Specification and Verification by
Model Checking. When a model is written in a particular tool’s
expressive language, its’ operating envelope can be specified
via a special kind of logic called “Linear Temporal Logic”
(LTL). A specification in LTL is often called a “property”, a
“temporal assertion”, a “Logical Invariant” (or “Invariant” in
short).

When scrutiny is complete, design inputs will have been
captured in an explicit model + invariants form, and we can
now automate the verification of this form, using an algorithm
developed by Amir Pnueli in 1977. [?]

This algorithm, which is now variously called ”Formal
Verification”, or ”Model Checking”, confirms that there is no
instance of model execution state, where the invariants are
violated. It follows therefore that guaranteed ”correctness” of
model designs are only as good as the model + invariant pair
provided by the designer.

3) Model Evolution: Kernel design, like any other software
project, is not static, and needs to evolve with changing needs
such as newer hardware and application requirements. When
a change in the design is required, it is first made explicit
through and via update of the Model, followed by Automated
Scrutiny (Model checking/Formal Verification). Finally, the
implementation code is updated to conform to the latest
verified model.

While this process is more onerous than the current process
of ad-hoc code updation (sometimes) followed by documen-
tation and unit test updates, I make the argument that this is
tolerable in aggregate because infrastructure such as kernel
code, is mostly mature, and evolutionary changes would be,
by their very nature, incremental and not disruptive at large.

4) Model Implementation: Once there are stable, verified
and canonical models in our codebase, those models become

the canonical source of design truth. All design implementa-
tions should conform to these models with high operational
fidelity. (See below for more on fidelity).

5) Model ⇔ Implementation Fidelity: Once a C-language
implementation is available (along with suitable documenta-
tion and Unit tests), a model extractor tool is run over it,
to “extract” the underlying model. This extraction process
requires guidance from someone who understands both the
design, and the implementation.

Once the extracted model source is available, it can be
Formally verified using the original invariants via “Automated
Scrutiny” (in this case, verification by model checking). If the
scrutiny passes, we infer that the extracted model, and the
designed model satisfy the same operational constraints, and
are therefore of high operational fidelity to each other.

Note that to the best of my knowledge, there is no rigourous
technique of polynomial computational complexity, to for-
mally verify the equivalence of two formal models, in the
general case. While there are theoretical proofs to show that
strongly unambiguous Buchi Automata, may be mechanically
and formally proved to be equivalent [?] [?], it is unclear if any
current programming languages can be converted exclusively
to strongly unambiguous Buchi automata. We thus use the
notion of “High Operational Fidelity”, as follows: If two
models satisfy the same invariant temporal logical constraints
to their operational state space, they are deemed to be of “High
Operational Fidelity” with respect to each other.

B. Prior art: MBSE

While DDD may superficially look like Model Based Sys-
tems Development/Engineering (MBSE), it is different in the
following ways:

1) Scope: DDD has Narrower scope - it doesn’t include
business/product level information capture, like MBSE.

2) Codegen: Unlike DDD, State of the Art MBSE tools
normally end with codegen, with no operational fidelity check-
ing of the implementation (see below).

3) Fidelity checking: DDD does not end with modelling
and invariant specification - there is a further step, where
the corresponding implementation is parsed, and the design
is extracted from it. This extracted design, is then compared
with the original design for operational fidelity. This process
ensures, that DDD models and implementations are in tight
sync and of high fidelity with each other.

III. IMPLEMENTING DESIGN DRIVEN DEVELOPMENT
(DDD)

Given the large source code base of the NetBSD kernel,
implementing DDD would involve ascertaining the semantic
layout of the source, and partitioning them into useful subsets
of manageable size. We will call these subsets of source
code, “hub”s. While it is likely computationally prohibitively
expensive, to attempt to verify the entire kernel sources in their
entirety, a verifier can be applied piecemeal to corresponding
designs for sources partitioned into “hubs”. We propose the
spin verifier [?] as the verifier of choice, and its companion



tool, modex, as the model extractor. A spin kernel hub is
defined as a collection of kernel source code that implements
a consistent API or a well defined state machine. Hubs under
scrutiny may be viewed similar to how atf(7) tests are currently
organised in the NetBSD source base. They are easily inte-
grable into the build system, since the spin tools are command
line driven, and thus easy to hook into the Makefile based
build tree, as well as the “autobuilds” Continuous Integration
system.

Let us now look at what a trivial DDD implementation of a
spin hub would look like in practice. There are two approaches
based on whether the hub is being designed and implemented
anew, or if a hub is being setup for “spin”-ing from existing
source code.

A. New Designs:

1) Capture formal model from description/idea: Let us start
with the informal requirement per the novice description in
Section ??:
“Given an array of predetermined maximum size ARRAYMAX,
iterate through its every element, and print it. The size of
the array shall always be equal to ARRAYMAX. Similarly,
the index value to the array, shall always be between 0 and
(ARRAYMAX - 1). Eventually, once the algorithm runs to its
completion, the index value will be equal to (ARRAYMAX -
1)”

We now proceed to write this requirement more formally,
in spin’s promela language. We begin with the first part of the
requirement:

“Given a predetermined maximum array size value, ARRAY-
MAX, iterate through every element, and print it.”

Listing 4
LOOP PROMELA CODE FRAGMENT

# d e f i n e ARRAYSIZE ARRAYMAX

i n t j , i , a r r a y [ARRAYSIZE ] ;

a c t i v e p r o c t y p e p r i n t a r r a y ( )
{

f o r ( j : 0 . . (ARRAYSIZE − 1) ) {
i = j ;
p r i n t f ( ” a r r a y [ d ] == %d\n ” , i , a r r a y [ i ] ) ;

}
}

2) Capture invariant constraints to model operation: Next
we shift our attention to the remaining description: “The size
of the array shall always be equal to ARRAYMAX. Similarly,
the index value to the array, shall always be between 0 and
(ARRAYMAX - 1). Eventually, once the algorithm runs to its
completion, the index value will be equal to (ARRAYMAX -
1)”

We see that this informal description contains some formal-
isable invariant properties - temporal logical assertions about
the system state which are expected to hold in all states of the
model.

Promela syntax allows us to group these under a special
heading called “ltl”, as follows:

Listing 5
INVARIANT ASSERTIONS IN LINEAR TEMPORAL LOGIC

l t l
{

t r u e
&& ( a lways (ARRAYSIZE == ARRAYMAX) )
&& ( a lways ( ( i >= 0) && i <= (ARRAYMAX − 1) )

)
&& ( e v e n t u a l l y a lways ( i == (ARRAYMAX − 1) ) )

}

3) Automated Model Checking: With these snippets suit-
ably in a source file called printarray.pml (See: Appendix A,
below, for listing), the spin verifier can be run over the model
to verify it by model checking. See the spin documentation
for details: [?]

This step allows the designer to refine the model iteratively,
by going back to steps 1) and 2) above if needed, until the
model+invariants are satisfactory.

4) Model Implementation: A reader with familiarity with
the C language, would be able to inspect the promela model
in Listing ?? and the C code snippet in Listing ?? to get
intuition on how the promela model may be implemented in
C. While out of scope of this paper, it would be important
to understand that while the promela code looks similar to C
in this instance, its’ “execution model” is very different from
that of C. We haven’t come across this situation, because the
“for ( : ... ) ...” construct has hidden the “guard statement”
concept that is critical to understanding how the promela code
flows. Please refer to the spin manual for further detail: https:
//spinroot.com/spin/Man/for.html

Once we have implemented the model in C language, as in
Listing ??, we are ready to harness the real power of DDD.

5) Model extraction: Spin comes with a companion tool
called “Modex” (short for “Model Extractor”). Modex is able
to (barely) parse modern C files, using a guided mechanism
called a “Harness”.

Below is a harness listing, to tell modex what C source file
to parse, and which function to attempt to extract the model
from.

https://spinroot.com/spin/Man/for.html
https://spinroot.com/spin/Man/for.html


Listing 6
MODEX HARNESS LISTING

/ / Sp in model e x t r a c t o r h a r n e s s f o r p r i n t a r r a y
. c

/ /
%F p r i n t a r r a y . c
%X −n p r i n t a r r a y

%P
# d e f i n e ARRAYSIZE ARRAYMAX

a c t i v e p r o c t y p e p r i n t a r r a y ( )
{
# i n c l u d e ” m o d e x p r i n t a r r a y . pml ”
}

l t l
{

t r u e
&& ( a lways (ARRAYSIZE == ARRAYMAX) )
&& ( a lways ( ( i >= 0) && i <= (ARRAYMAX − 1) )

)
&& ( e v e n t u a l l y a lways ( i == (ARRAYMAX − 1) ) )

}

%%

Note the ltl{} subsection listing within the harness. The LTL
invariants in the extracted model, and the design based model
need to be identical, for operational fidelity to be verified. A
better way to arrange for this would be to have the ltl{} section
have its own file, which can then be directly included in both
models.

Below is the result of applying the harness in Listing ??
above, to modex, when extracting a formal model from the C
function in Listing ?? .

Listing 7
MODEX EXTRACTED MODEL FROM PRINTARRAY.C

/ / Genera ted by MODEX V e r s i o n 2 . 1 1 − 3
November 2017

/ / Wed 07 Feb 2024 1 0 : 4 2 : 2 6 PM IST from
p r i n t a r r a y . c

i n t j ;
i n t i ;
i n t a r r a y [ 1 0 ] ;
a c t i v e p r o c t y p e p r i n t a r r a y ( )
{

c code { now . j =0 ; } ;
L 0 :

do
: : c e xp r { ( now . j <10) } ;

c code { now . i =now . j ; } ;
c code { now . j ++; } ;

goto L 0 ;
c code { now . j ++; } ;

: : e l s e ; −> break
od ;

;
}
l t l
{

t r u e
&& ( a lways (ARRAYMAX == ARRAYMAX) )
&& ( a lways ( ( i >= 0) && i <= (ARRAYMAX − 1) )

)
&& ( e v e n t u a l l y a lways ( i == (ARRAYMAX − 1) ) )

}

If either model fails to satisfy their respective verification
runs, DDD mandates that both the modelling and the imple-
mentation steps above be re-iterated, until verification suc-
ceeds. At this point, we say that the design in “printarray.pml”
and the implementation in “printarray.c” have high operational
fidelity with each other.

See Appendix B below (“DDD in action”), for some illus-
trative examples, in action.

B. Existing Designs: ”Model Driven Reverse Engineering”

Let us assume that our source “hub” consists of the C stub
code in Listing 1, above ??.

1) Discover the design: Manual inference of design, as
described in Section ??, ”Design discovery and Documen-
tation” would give us an informal description of the design
implemented in “hub” code. We re-print it below for clarity:

“Given an array of predetermined maximum size ARRAY-
MAX, iterate through its every element, and print it. The size
of the array shall always be equal to ARRAYMAX. Similarly,
the index value to the array, shall always be between 0 and
(ARRAYMAX - 1). Eventually, once the algorithm runs to its
completion, the index value will be equal to (ARRAYMAX -
1)”

2) Model the design: Make design explicit as in Section
??. ”Proposed Solution: Design Driven Development(DDD)”



At this point, we are ready to proceed per ?? “New De-
signs”, above. Obviously, since we start with the hub source,
we can skip ?? “Model Implementation”.

The one constraint we have is that, unlike in a new design,
retrofitting an inferred design model will have to minimise
changing the hub source, until our confidence in the verifica-
tion of the model+ltl pair (recall that the ltl section formally
expresses the invariants in the design) by model checking, is
strong enough to convince us that the existing implementation
has incorrect or buggy flaws.

I expect that this process will unearth deep design bugs
lurking in the kernel source. I am in the process of building
a set of models as above, discovered from the entire set
of NetBSD kernel source hubs. I call this set of models
“SpinOS”. [work in progress].

IV. THE CASE FOR SPIN

The reader would have noticed that the spin verifier was
rather abruptly dropped in, as the choice of verifier in this
paper. Here we make a case for why this choice was made.

The case for spin, as the modelling language of choice for
NetBSD includes:

A. Familiarity

Spin’s model language is called Promela, and its syntax is
easy to understand for C programmers.

B. C-toolchain

The spin toolchain has clean integration into the C-toolchain
ecosystem. It is itself written in ANSI C, and is thus a natural
fit for a C language codebase.

C. Embedding

spin provides direct support for embedded C code. [?]

V. FURTHER WORK NEEDED AND HELP WANTED

A. Model Extractor (Modex)

The spin model extractor, called “Modex” requires further
development to be able to be used as a drop-in parser for
NetBSD kernel sources, in order to extract models from them.

• The Modex parser needs overhaul to catchup with C99
• The Modex ”Harness” language needs re-think/design in

order to make it more expressive and powerful.

VI. FUTURE RESEARCH WORK

A. Scrutiny via LLM Q&A

While formal models+ invariants are rigorous and precise,
understanding them requires reading and inferring semantics
from them. This involves a form of scrutiny similar in spirit,
to ??, above. Similar to how the current process of design
learning involves Q&A with subsystem experts, it is proposed
that a suitably trained Large Language Model (LLM) might
be able to answer factual questions based on the provided
model+invariant Formal Specification pairs.

An LLM, can operate in slightly different variants:

1) Static: The ”Static” variant, is where the LLM limits its
answers based on the current model/invariant pair information.
This limitation is about what the model covers at present, ie;
questions of “what” in its currently implemented state.

2) Dynamic: A more interesting ”Dynamic” variant, might
use the “Retrieval Augmented Generation” (RAG) technique,
where the student poses new invariants to the Formal system
via an LLM→RAG pipeline. Here, the RAG can drive the
model checker in the backend as part of “Retrieval”, and then
report back (via “Augmented Generation”) on the question
posed as invariants, based on the formal satisfiability of the
question.

This provides the questioner with better semantic informa-
tion about the operating envelope of the model, by asking
“what if” questions, to the RAG, before even having to think
about implementation.

For eg: a questioner could ask - “Can printarray() be used to
discover the size of an array ?” - to which, given that we have
an LTL invariant “eventually always (i == (ARRAYMAX - 1)”
, the RAG has sufficiently precise information to answer this
question, by running the model checker with the additional
invariant “eventually (i == (ARRAYSIZE - 1))” and give a
correspondingly truthful answer.

B. Document generation

Given sufficient model/invariant and implementation source
code as training data, it is concievable, that Documentation
can be auto generated directly from this data, using modern
Generative AI techniques.

C. Code generation

It is also concievable that Code could be auto generated
using a suitably trained LLM, simply given a model/invari-
ant source input. The key difference with current state of
the art, is that any generated code will have to pass the
extraction→fidelity verification by model checking path, to be
accepted into the codebase. We thus have built in “AI safety”.

ACKNOWLEDGEMENTS

Much gratitude to Dr. Gerard Holzmann (Author of spin)
for prompt Q&A responses on various aspects of Formal
Verification and the Spin verifier in particular.

Shout-out to Matthew Green, Taylor R. Campbell and David
Holland, for prompt and precise answers to Q&A around
model+invariants in the implicit design of the NetBSD kernel.
Big props to all the NetBSD developers who make the NetBSD
developer community a fun, inclusive and safe online space
to be in, and learn things at.

Finally, many thanks to Anuvrat Pareshar, Ashik
Salahudeen, Biby Sam Varghese, Konarak Ratnakar and
Markus Graeser for kindly reviewing drafts of this manuscript,
and coming up with useful corrections and suggestions.



REFERENCES

[1] “ARC: A Self-Tuning, Low Overhead Replacement Cache”, Nimrod
Megiddo and Dharmendra S. Modha, 2nd USENIX Conference on File
and Storage Technologies (FAST 03), 2003, San Francisco, CA

[2] “An automata-theoretic approach to automatic program verification”, by
Moshe Y. Vardi, and Pierre Wolper, Proc. First IEEE Symp. on Logic
in Computer Science, 1986, pp. 322-331.

[3] Mathew, Cherry G. (2023-10-23). “Formal models as source of truth
for Software Architects.”. LKML.org Retrieved 2023-12-29.

[4] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the
18th IEEE Symposium Foundations of Computer Science (FOCS 1977),
pages 46-57, 1977.

[5] “A Unified Approach For Showing Language Containment and Equiv-
alence Between Various Types of co-Automata.” E.M. Clarke, LA.
Draghicescu, R.P. Kurshan September 1989 CMU-CS-89-192

[6] “Equivalence and Inclusion Problem for Strongly Unambiguous Buchi
Automata”. Nicolas Bousquet ENS Chachan, France and Christof Lod-
ing RWTH Aachen, Informatik 7, 52056 Aachen, Germany

[7] G. J. Holzmann “Verifying Multi-threaded Software with Spin”. Spin
Website, Retrieved 2023-12-29

[8] Mathew, Cherry G. (2023-09-02) “ARC model specified in spin-
root/promela”. tech-kern@NetBSD.org mailing list, retrieved, 2023-12-
29.

APPENDIX A: CODE LISTINGS

Listing 8
PRINTARRAY.C: C SOURCE CODE

/ *
* T h i s i s companion s o u r c e f o r t h e AsiaBSDCon

2024 paper t i t l e d :
* ”And t h e T r u t h w i l l make you Sp in ” , by

cherry@NetBSD . org
* /

# i n c l u d e <s t d i o . h>
# i n c l u d e <a s s e r t . h>

i n t j , i , a r r a y [ 1 0 ] ;

void
p r i n t a r r a y ( void )
{

f o r ( j = 0 ; j < 1 0 ; j ++) {
i = j ;
p r i n t f ( ” a r r a y [%d ] == %d\n ” , i ,

a r r a y [ i ] ) ;
}

}

void
t e s t p r i n t a r r a y ( void )
{

a s s e r t ( i >= 0) ;

p r i n t a r r a y ( ) ;

a s s e r t ( i < 10) ;
}

i n t main ( i n t argc , char ** a rgv )
{

p r i n t f ( ” Running t e s t p r i n t a r r a y ( ) \n ” ) ;
t e s t p r i n t a r r a y ( ) ;
p r i n t f ( ” Running p r i n t a r r a y ( ) \n ” ) ;
p r i n t a r r a y ( ) ;
p r i n t f ( ” A l l done . E x i t i n g \n ” ) ;

}

Listing 9
PRINTARRAY.PRX: MODEX EXTRACTION HARNESS

/ *
* T h i s i s companion s o u r c e f o r t h e AsiaBSDCon

2024 paper t i t l e d :
* ”And t h e T r u t h w i l l make you Sp in ” , by

cherry@NetBSD . org
* /

/ / Sp in model e x t r a c t o r h a r n e s s f o r p r i n t a r r a y
. c

/ /
%F p r i n t a r r a y . c
%X −n p r i n t a r r a y

%P
# d e f i n e ARRAYSIZE ARRAYMAX

a c t i v e p r o c t y p e p r i n t a r r a y ( )
{
# i n c l u d e ” m o d e x p r i n t a r r a y . pml ”
}

l t l
{

t r u e
&& ( a lways (ARRAYSIZE == ARRAYMAX) )
&& ( a lways ( ( i >= 0) && i <= (ARRAYMAX − 1) )

)
&& ( e v e n t u a l l y a lways ( i == (ARRAYMAX − 1) ) )

}

%%

Listing 10
MODEX EXTRACTED MODEL VIA PRINTARRAY.PRX

/ / Genera ted by MODEX V e r s i o n 2 . 1 1 − 3
November 2017

/ / Thu 08 Feb 2024 0 2 : 1 4 : 0 7 AM IST from
p r i n t a r r a y . c

i n t j ;
i n t i ;
i n t a r r a y [ 1 0 ] ;
a c t i v e p r o c t y p e p r i n t a r r a y ( )
{

c code { now . j =0 ; } ;
L 0 :

do
: : c e xp r { ( now . j <10) } ;

c code { now . i =now . j ; } ;
c code { now . j ++; } ;

goto L 0 ;
c code { now . j ++; } ;

: : e l s e ; −> break
od ;

;
}
l t l
{

t r u e
&& ( a lways (ARRAYMAX == ARRAYMAX) )
&& ( a lways ( ( i >= 0) && i <= (ARRAYMAX − 1) )

)
&& ( e v e n t u a l l y a lways ( i == (ARRAYMAX − 1) ) )

https://spinroot.com/spin/Doc/lics86.pdf
https://lkml.org/lkml/2023/10/23/870
https://lkml.org/lkml/2023/10/23/870
http://shelf2.library.cmu.edu/Tech/21054870.pdf
http://shelf2.library.cmu.edu/Tech/21054870.pdf
https://perso.liris.cnrs.fr/nbousquet/BL-LATA10.pdf
https://perso.liris.cnrs.fr/nbousquet/BL-LATA10.pdf
https://spinroot.com/spin/what.html
https://mail-index.netbsd.org/tech-kern/2023/09/02/msg029111.html
https://mail-index.netbsd.org/tech-kern/2023/09/02/msg029111.html


}

Listing 11
PRINTARRAY.PML: MODEL PROMELA CODE

/ *
* T h i s i s companion s o u r c e f o r t h e AsiaBSDCon

2024 paper t i t l e d :
* ”And t h e T r u t h w i l l make you Sp in ” , by

cherry@NetBSD . org
* /

# d e f i n e ARRAYSIZE ARRAYMAX

i n t j , i , a r r a y [ARRAYSIZE ] ;

a c t i v e p r o c t y p e p r i n t a r r a y ( )
{

f o r ( j : 0 . . (ARRAYSIZE − 1) ) {
i = j ;
p r i n t f ( ” a r r a y [ d ] == %d\n ” , i , a r r a y [ i ] ) ;

}
}

l t l
{

t r u e
&& ( a lways (ARRAYSIZE == ARRAYMAX) )
&& ( a lways ( ( i >= 0) && i <= (ARRAYMAX − 1) )

)
&& ( e v e n t u a l l y a lways ( i == (ARRAYMAX − 1) ) )

}

APPENDIX B: DDD IN ACTION

Listing 12
SPIN VERIFIER RUN WITH ARRAY OF MAX ENTRIES 10

$ s p i n −DARRAYMAX=10 − s e a r c h p r i n t a r r a y . pml
l t l l t l 0 : ( ( ( 1 ) && ( [ ] ( ( 1 0 = = 1 0 ) ) ) ) && ( [ ]

( ( ( i >=0) ) && ( ( i <=(10 −1) ) ) ) ) ) && (<> ( [ ]
( ( i ==(10 −1) ) ) ) )

( Sp in V e r s i o n 6 . 5 . 2 −− 6 December 2019)
+ P a r t i a l Order R e d u c t i o n

F u l l s t a t e s p a c e s e a r c h f o r :
n e v e r c l a i m + ( l t l 0 )
a s s e r t i o n v i o l a t i o n s + ( i f w i t h i n

scope of c l a i m )
a c c e p t a n c e c y c l e s + ( f a i r n e s s

d i s a b l e d )
i n v a l i d end s t a t e s − ( d i s a b l e d by

n e v e r c l a i m )

S t a t e − v e c t o r 28 byte , d e p t h r e a c h e d 87 , e r r o r s
: 0

169 s t a t e s , s t o r e d (250 v i s i t e d )
118 s t a t e s , matched
368 t r a n s i t i o n s (= v i s i t e d +matched )

0 a to mi c s t e p s
hash c o n f l i c t s : 0 ( r e s o l v e d )

S t a t s on memory usage ( in Megabytes ) :

0 . 009 e q u i v a l e n t memory usage f o r
s t a t e s ( s t o r e d * ( S t a t e − v e c t o r +
o v e r h e a d ) )

0 .286 a c t u a l memory usage f o r s t a t e s
128 .000 memory used f o r hash t a b l e ( −

w24 )
0 .534 memory used f o r DFS s t a c k ( −

m10000 )
128 .730 t o t a l a c t u a l memory usage

u n r e a c h e d in p r o c t y p e p r i n t a r r a y
(0 o f 11 s t a t e s )

u n r e a c h e d in c l a i m l t l 0
s p i n n v r . tmp : 3 0 , s t a t e 44 , ”−end −”

(1 o f 44 s t a t e s )

pan : e l a p s e d t ime 0 s e c o n d s

$

Listing 13
MODEX EXTRACTION + SPIN VERIFICATION WITH ARRAY OF MAX

ENTRIES 10

$ modex p r i n t a r r a y . c ; s p i n −DARRAYMAX=10 −
s e a r c h model

MODEX V e r s i o n 2 . 1 1 − 3 November 2017
c r e a t e d : model and modex . run
l t l l t l 0 : ( ( ( 1 ) && ( [ ] ( ( 1 0 = = 1 0 ) ) ) ) && ( [ ]

( ( ( i >=0) ) && ( ( i <=(10 −1) ) ) ) ) ) && (<> ( [ ]
( ( i ==(10 −1) ) ) ) )

( Sp in V e r s i o n 6 . 5 . 2 −− 6 December 2019)
+ P a r t i a l Order R e d u c t i o n

F u l l s t a t e s p a c e s e a r c h f o r :
n e v e r c l a i m + ( l t l 0 )
a s s e r t i o n v i o l a t i o n s + ( i f w i t h i n

scope of c l a i m )
a c c e p t a n c e c y c l e s + ( f a i r n e s s

d i s a b l e d )
i n v a l i d end s t a t e s − ( d i s a b l e d by

n e v e r c l a i m )

S t a t e − v e c t o r 68 byte , d e p t h r e a c h e d 67 , e r r o r s
: 0

130 s t a t e s , s t o r e d (192 v i s i t e d )
91 s t a t e s , matched

283 t r a n s i t i o n s (= v i s i t e d +matched )
0 a to mi c s t e p s

hash c o n f l i c t s : 0 ( r e s o l v e d )

S t a t s on memory usage ( in Megabytes ) :
0 . 012 e q u i v a l e n t memory usage f o r

s t a t e s ( s t o r e d * ( S t a t e − v e c t o r +
o v e r h e a d ) )

0 .284 a c t u a l memory usage f o r s t a t e s
128 .000 memory used f o r hash t a b l e ( −

w24 )
0 .534 memory used f o r DFS s t a c k ( −

m10000 )
128 .730 t o t a l a c t u a l memory usage

u n r e a c h e d in p r o c t y p e p r i n t a r r a y



model : 1 6 , s t a t e 6 , ” now . j ++; ”
(1 o f 12 s t a t e s )

u n r e a c h e d in c l a i m l t l 0
s p i n n v r . tmp : 3 0 , s t a t e 44 , ”−end −”

(1 o f 44 s t a t e s )

pan : e l a p s e d t ime 0 s e c o n d s

$


